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Abstract

The properties of many physical systems and/or the actions on these systems exhibit notable random ¯uctuations
that cannot be captured by deterministic models. Examples are used to demonstrate the need for probabilistic
models to represent systems and inputs depending on uncertain parameters. The displacement, stress, strain,

damage, and other output measures of these systems are stochastic so that their properties cannot be obtained by
the deterministic methods of classical solid mechanics. The methods of stochastic mechanics are needed for solution.
Following an introduction and a section on elementary concepts of probability theory, the four possible
combinations of deterministic/stochastic system and input are examined in separate sections. The case of

deterministic systems and inputs is discussed to demonstrate the potential of the stochastic methods for solving
classical problems of solid mechanics. The case of deterministic operators and random inputs is focused on random
vibration problems because these problems constitute a major topic of stochastic mechanics. The last two sections

deal with problems de®ned by stochastic operators and deterministic or stochastic inputs. All the sections on
stochastic mechanics review some of the most notable past accomplishments, outline current research trends on both
analytical and numerical solutions, and illustrate some of these research trends by simple examples. # 1999 Elsevier

Science Ltd. All rights reserved.

Keywords: Homogenization; Probability theory; Random vibration; Random walk; Reliability; Solid mechanics; Stochastic mech-

anics

1. Introduction

The properties of many physical systems and/or the input to these systems exhibit complex random

¯uctuations that cannot be characterized completely by deterministic models. Probabilistic models are

needed to (1) quantify the uncertainty in these properties, (2) develop realistic representations of the

output and the damage state of these systems, and (3) obtain rational and safe designs. Figs. 1 and 2

illustrate the uncertainties in the system and the input, respectively. Fig. 1 shows histograms of the Euler
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angles FF=(F1, F2, F3) of the atomic lattice in aluminum crystals (Arwade et al., 1998). These
histograms give the range of values of FF and the likelihood of these values. The atomic lattice
orientation exhibits a complex spatial variation that cannot be represented adequately by deterministic
models and may constitute one of the controlling factors of fatigue life for metals. Fig. 2 shows a time
record of the coastal wave height measured in meters at Duck, North Carolina and the histogram of a
scaled version of this record. The solid line is the Gaussian density with the mean and variance of the
scaled record. The di�erences between this line and the histogram demonstrate that the wave height
record is not Gaussian. Wind pressures, seismic ground acceleration, aerodynamic forces, and other
actions have similar features so that they need to be characterized by probabilistic models (Grigoriu,
1995).

Classical deterministic methods can provide only crude approximations for the response and the
evolution of the damage state of systems subjected to inputs with uncertain properties. The analysis of
these systems requires specialized techniques that account for the uncertainty in both the system and the
input and characterize the system output by probabilistic models. A main objective of stochastic
mechanics is the study of the input±output relationship for systems and inputs with uncertain properties.
Table 1 gives relevant examples of stochastic mechanics problems for all combinations of input and
system properties. The algebraic or di�erential equations de®ning the evolution of a physical system

Fig. 2. Wave elevation.

Fig. 1. Lattice orientation for aluminum grains.
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have deterministic and stochastic coe�cients for deterministic and stochastic systems, respectively. If the
system and the input are deterministic, we deal with classical solid mechanics problems. We will see that
some of these problems can be solved e�ciently by methods of stochastic mechanics. If the system is
deterministic and the input is random and time dependent, the output is a stochastic process. The theory
of random vibration extending the methods of classical dynamics to the case in which the input is
stochastic can be applied for solution. If the physical system is stochastic, the analysis is much more
di�cult because the algebraic/di�erential equations de®ning the system output have random coe�cients.

2. A primer on probability

Our discussion will use some of the jargon of probability theory. This section presents a brief and
heuristic review of the essential concepts of probability theory. Additional information on these concepts
can be found, for example, in Grigoriu (1995), Lin and Cai (1995), Soong and Grigoriu (1993).

Histograms were already used in the previous section to justify the need for probabilistic models.
Here, we de®ne the concept of histogram by an example. Suppose that a record of the yearly maximum
wind speed over a period of n years is available at a site, wind speed maxima in di�erent years are
unrelated, (a, b ) denotes the range of the values of this record, and the wind speed range is divided in m
equal sub-intervals. Let ni be the number of data in the sub-interval i of (a, b ). The histogram of the
yearly maximum wind speed record gives the fraction of data ni/n in each of the sub-intervals of (a, b ).
The ordinates of a histogram are positive and the sum of these ordinates over a sub-interval (a1, b1) in
(a, b ) provides an estimate of the probability that the yearly maximum wind speed takes values in (a1,
b1). If the length n of the record approaches in®nity and the partition of the interval (a, b ) is re®ned, the
histogram converges to a continuous function called probability density function. This function and the
histogram have similar properties. Histograms can be developed for two or more data sets, for example,
the records of yearly maximum wind speed and the corresponding wind direction. The resulting
histogram is de®ned on R2 and converges to the joint probability density function of wind speed and
direction as the sample size increases inde®nitely. The joint probability density function is an extension
of the probability density function to spaces of dimension two and higher.

The probability density function can be used to characterize random variables, that is, functions taking
various values with speci®ed probabilities. For example, consider the experiment of rolling a die
characterized by the equally likely outcomes {1,2,3,4,5,6}. The outcomes of this experiment can be used
to de®ne a random variable X taking the values {1,2,3,4,5,6} with equal probability. The probability
density function of X is f(x )=(1/6)d(xÿi ), i= 1,..., 6, where d denotes the delta function. This is not
the only random variable that can be associated with the experiment of rolling a die. For example,
consider a game in which we loose $10 and win $5 if the outcome is {1,2} (failure) and {3,4,5,6}
(success), respectively. The random variable Y taking the values ÿ$10 and $5 for the failure and success

Table 1

Topics of stochastic mechanics

System (operator)

Input Deterministic Stochastic

Deterministic Solid mechanics System reliability

Homogenization

Stochastic Random vibration Stochastic ®nite element

Seismic waves
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events with probabilities 2/6 and 4/6, respectively, su�ces to play this game. The random variable X can
also be used to play the game but this variable provides unnecessary detailed information. If a random
variable takes values in Rd, dr2, rather than on the real line, it is called a random vector. For example,
consider the two-dimensional random vector X=(X1, X2) whose coordinates denote the number of
hours a student studies for a course and the ®nal grade. The random variables X1 and X2 are related so
that the probability density functions of these variables are insu�cient to characterize the random vector
X=(X1, X2). The joint probability density function of (X1, X2) is needed to specify the law of X.

Similar considerations can be used to introduce the concepts of stochastic process and ®eld. For
example, let {xi(t )}, i= 1,..., n, be a set of n records consisting of hourly temperatures at, for example,
the Cornell tower starting on January 1 and ending on December 31 of each year. The set of these
records, called sample paths, can be used to characterize the trend and variability of temperature during
a year at the Cornell tower. Consider a die with n equally likely sides corresponding to the available
temperature records {xi(t )}, i = 1,..., n, at the Cornell tower. To extract a record at random we need to
roll this die and select the outcome, that is, one of the records xi(t ). If n increases inde®nitely, the
resulting set of records de®nes a stochastic process X(t ) giving the temperature at the Cornell tower. A
stochastic process can be viewed as a mathematical abstraction de®ning a rule for the random selection
of sample paths from a set of speci®ed functions of time. The characterization of stochastic processes is
much more complicated than the characterization of random variables because we need to specify both
the range of values with their likelihood as well as the time evolution the sample paths. The stochastic
®eld resembles a stochastic process but depends on a space rather than a time argument. Because time
has a natural ¯ow and space does not, there are notable di�erences between these two concepts but
these di�erences are not relevant for our discussion.

In many engineering problems a partial characterization of random quantities, referred to as the
second moment properties, can provide useful information on the trend and the magnitude of the
random ¯uctuations about this trend. The second moment properties consists of the mean and variance
for random variables, the mean vector and covariance matrix for random vectors, and the mean function
and covariance functions for stochastic processes and ®elds.

The mean and the arithmetic mean are similar concepts. For example, the mean m of the random
variable Y taking the values ÿ$10 and $5 with probabilities 2/6 and 4/6, respectively, is m=(ÿ$10)(2/
6)+($5)(4/6)=0. The mean of a random vector X is equal to the vector de®ned by the means of its
coordinates. The mean of the stochastic process giving the temperature at the Cornell tower can be
approximated by the arithmetic mean, m̂�t� � �1n �

Pn
i�1xi�t�, of the records {xi(t )}. If n 41, the estimate

m̂�t� approaches the actual mean m(t ) of the process.
The variance of a random variable X is s 2=f(xÿm )2f(x )dx and resembles the concept of moment of

inertia with f interpreted as material density. The variance of the random variable Y considered in the
previous paragraph is s 2=(ÿ10ÿ0)2(2/6)+(5ÿ0)2(4/6)=50. The square root of the variance is called
standard deviation. The ratio v=s/m is the coe�cient of variation of Y and is de®ned for random
variables with non-zero mean. The second moment properties of a random vector X={Xi } consists of
the mean mi, variance s2i of the random variables Xi, and a measure of the relationship between these
random variables given by the covariance, gij=ff(xiÿmi )(xjÿmj )fij(xi, xi )dxi dxj for all i$ j, where fij
denotes the joint probability density function of random variables Xi and Xj. The covariance gii
coincides with the variance s2i of Xi. If the covariance gij are zero for all i$ j, we say that the
coordinates of the random vector X are uncorrelated. The mean vector mm={mi } and the covariance
matrix gg={gij } de®ne the second moment properties of X. The scaled covariance rij � gij=

���������giigjj
p

is called
the correlation coe�cient of Xi and Xj. The covariance function of a stochastic process X(t ), denoted by
c(t, s ), is equal to the covariance of the random variables X(t ) and X(s ) for all values of times t and s.
If the mean function m(t )=m is constant and the covariance function c(t, s )=c(|tÿs|) depends only on
the time lag |tÿs|, the process is said to be weakly stationary. The Fourier transform of c(|tÿs|) is called
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the mean power spectral density of X(t ) and provides information on the frequency content of this
process. The mean power spectral density can be viewed as the stochastic counterpart of the Fourier
transform. A stochastic process with constant mean power spectral density is called white noise. The
de®nitions of this paragraph can be extended without di�culties to stochastic processes and ®elds taking
values in a vector space rather than the real line (Grigoriu, 1995; Soong and Grigoriu, 1993).

The class of Gaussian random variables, random vectors, and stochastic processes is particularly
useful for both theoretical studies and applications. We say that an Rd-valued random vector X with
mean mm and covariance gg is Gaussian if its probability density function is

f �x� � ��2p�d det�ggg��ÿ1=2 exp

�
ÿ 1

2
�xÿ mmm�Tgggÿ1�xÿ mmm�

�
, x 2 Rd, �1�

where the superscript T denotes matrix transposition. A stochastic process X(t ) is said to be Gaussian if
the random vectors consisting of values of the process at an arbitrary number of times is Gaussian. The
Gaussian vectors and processes have the property that they remain Gaussian under linear
transformations.

3. Deterministic operator and input

The solution of deterministic problems of equilibrium, propagation, and dynamics is the focus of
classical solid mechanics. Generally, the solutions of these problems satisfy complex algebraic or partial
di�erential equations that cannot be obtained in closed form. The ®nite di�erence, ®nite element,
boundary element, and other numerical methods are used for solution. While these methods are
extremely powerful and versatile, they do have certain drawbacks. A common feature of all these
methods is that the solution must be calculated in the entire domain of de®nition of a problem, even if
it is needed at a single point or a small number of points of the domain of de®nition.

It is possible to solve linear systems of equations, algebraic eigenvalue problems, homogeneous or
inhomogeneous integral Fredholm equations, and other deterministic equations relevant to solid
mechanics by methods of stochastic mechanics. For example, the Monte Carlo simulation was used to
solve the Fredholm equation. This equation can be viewed as a recurrence formula relating current and
updated approximations of the solution that involves an integral with integrand depending on a Green's
function. The normalized Green function interpreted as a probability density function can be used to
calculate this integral by Monte Carlo simulation and update the approximate solution. The method was
applied to solve a large number of physics problems (Kalos and Whitlock, 1986). There have been no
notable attempts to solve solid mechanics problems by Monte Carlo simulation or other methods of
stochastic mechanics.

A current research trend in stochastic mechanics relates to the development of alternative methods for
solving boundary value problems relevant to solid mechanics by Monte Carlo simulation, for example,
the random walk and other methods (Grigoriu, 1997b; Sabelfeld, 1991). The random walk method is
local in the sense that it gives the solution of a partial di�erential equation at an arbitrary point of the
domain of de®nition directly rather than extracting it from the ®eld solution. There is no need to
formulate or solve linear systems of equations as required by the traditional numerical methods of solid
mechanics. Although the theoretical considerations supporting the random walk and related methods
are relatively complex and involve concepts of elasticity, applied mathematics, random processes, and
stochastic integrals, the numerical algorithms for solution have attractive features. These algorithms are
simple to program, always stable, accurate, local, and ideal for parallel computation.

This section illustrates the application and some features of the random walk method by a simple
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example. Let u be the solution of the Dirichlet boundary value problem

Du�x� � g�x�, x 2 D,

u�x� � h�x�, x 2 @D, �2�
where D is an open bounded set in Rd, @D denotes the boundary of D, D � Pd

i�1@
2=@x2

i de®nes the
Laplace operator, and g; h are speci®ed functions. The solution u(x) can be interpreted as the steady
state temperature at point x in a material of unit conductivity occupying the domain D subject to the
¯ux g and boundary temperature h. The objective is to ®nd the local solution of this boundary value
problem, that is, the value of the unknown function u at an arbitrary point x of D. The classical
methods of computational mechanics cannot deliver the value of u(x) directly. As previously indicated,
these methods have to extract the value of the solution u at x from the ®eld solution.

The random walk method uses sample paths of an Rd-valued Brownian motion process B(t ) to
estimate u(x) at an arbitrary point x in D. Fig. 3 shows two sample paths of B(t ) starting at an interior
point x of a two-dimensional domain D. Let tk and xk be the time at which sample k of B(t ) leaves D
for the ®rst time and the mark on @D of this sample at time tk, respectively. It can be shown that u(x)
can be approximated by

û�x� � 1

n

Xn
k�1

h�xk� ÿ 1

2n

Xn
k�1

�tk
0

g�bk�s��ds, �3�

where {bk(t )}, k= 1,2,..., n, are samples of B(t ) and n denotes the sample size. The proof of Eq. (3)
involves technicalities that can be found in Chung and Williams (1990), Grigoriu (1997b), and éksendal
(1992). The approximation û�x� approaches the exact solution u(x) as the sample size n approaches
in®nity. The approximate solution of Eq. (3) depends on averages of the boundary values of u and of
the integral of the ¯ux along the sample paths of the Brownian motion.

The formula of Eq. (3) can be used to implement a numerical algorithm for ®nding the local solution
of Eq. (2). The implementation involves the generation of sample paths of the Brownian motion B(t ),
that we have not yet de®ned. The generation of samples of B(t ) can be based on the fact that the

Fig. 3. Two samples of Brownian motion process B(t ).
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increments of this process over non-overlapping time intervals are independent Gaussian vectors with
mean zero and covariance equal to the identity matrix i scaled by the square of the time increment
(Grigoriu, 1995). For example, suppose that sample k of the Brownian motion process is at point xxk at
time t. At a later time t ' this sample is at xxk+zk, where zk is a sample of a d-dimensional Gaussian
vector with mean zero and covariance matrix i

�����������
t 0 ÿ t
p

. E�cient algorithms are available for generating
the Gaussian samples zk (Grigoriu, 1995).

Consider for illustration the steady state solution of the heat equation for an eccentric annulus D of
unit outer radius with a circular hole of radius 1/4 shifted from the center of the unit disc by 1/4. The
boundary conditions are u = 100 and u = 0 for the outer and the inner boundaries of D, @D1 and @D2,
and the ¯ux g in Eq. (2) is assumed to be zero. The analytical solution of this problem can be found in
Greenberg (1978) and is used to evaluate the accuracy of the random walk method. The approximate
temperature at an arbitrary point x of D is û�x� � �n1=n��100� by Eq. (3), where n1 denotes the number
of samples of the Brownian motion exiting D through @D1. The average error recorded at x=(0.7, 0);
(0.9, 0); (0, 0.25); (0, 0.5); and (0,0.75) is 2.79% for n = 1000 samples and a time steps in the range
(0.0001, 0.001). The error can be reduced by increasing the sample size and/or reducing the time step
(Grigoriu, 1997b).

The random walk method has been applied to solve a relatively broad range of solid mechanics
problems. The list of solutions includes the Laplace, Poisson, transient heat, transport, and SchroÈ dinger
equations with Dirichlet and Neumann boundary conditions. The algorithm for solution is similar to the
one used in our illustration but the Brownian motion may have to be replaced with di�usion processes
depending on the structure of the di�erential operator of the solid mechanics problem (Grigoriu, 1998a,
1998b, 1997a, 1997b).

4. Deterministic operator and stochastic input

Stochastic mechanics problems speci®ed by deterministic operators and random inputs have been
studied extensively and continue to be investigated. The operators can be linear or nonlinear, di�erential
or algebraic and the input may be described by stochastic processes and/or random variables. The main
objective of most studies in this area of stochastic mechanics is the determination of the law, second
moment properties, and other statistics of the solution of these problems. This objective includes
reliability studies corresponding to the ®rst time the state violates a design condition, fatigue, and other
various failure modes as well as the stability of the motion of dynamic systems subjected to random
input, referred to as stochastic stability. The possible combinations of the types of operators and inputs
de®ne a broad range of stochastic mechanics problems. The nonlinear memoryless transformation of a
scalar input process is one of the simplest operator-input combination and is frequently encountered in
applications, for example, the wind pressure is equal approximately to the square of the wind speed
process. Memoryless transformations of Gaussian processes de®ne a class of non-Gaussian processes,
called translation processes, that is useful for many applications (Grigoriu, 1995). The random vibration
problems correspond to deterministic di�erential operators with random process inputs and constitute
an extension of classical dynamic problems to the case in which the input is random.

Random vibration is one of the oldest topics of stochastic mechanics. Early random vibration studies
focused on the determination of the second moment properties of the output of relatively simple linear
systems. In some studies, it was assumed incorrectly that the output of linear systems is Gaussian
irrespective of the distribution of the input. Moments and other probabilistic characteristics have also
been obtained for the output of nonlinear systems subjected to Gaussian white noise based on numerical
solutions of the Fokker±Planck±Kolmogorov equation or heuristic approximations, for example, closure
methods for solving the in®nite hierarchy of moment equations associated with nonlinear systems.

M. Grigoriu / International Journal of Solids and Structures 37 (2000) 197±214 203



Methods have also been developed for calculating the reliability of dynamic systems subjected to
random load processes. Most results are for stationary Gaussian outputs and design conditions related
to the ®rst excursion of a response or damage index above critical threshold fatigue life (Bolotin, 1984;
Crandall and Mark, 1963). The stability of the solution of random vibration problems has also been
investigated based on the properties of the ®rst few moments of the state (Bolotin, 1984; Crandall and
Mark, 1963).

Current research trends include both analytical and numerical solutions of random vibration problems.
The analytical studies are focused on the development of general methods of analysis that can deliver
sample properties of the output processes rather then global properties such as the mean and covariance
functions (Naess and Krenk, 1996) and are based on less simple mathematical concepts than used in the
past. For example, these studies:

1. use properties of di�usion, LeÂ vy, martingales, semimartingales, and other processes,
2. distinguish between the Gaussian, Poisson, and LeÂ vy white noises, and
3. operate with stochastic integrals de®ned in the ItoÃ sense that do not obey the rules of classical

calculus.

A large number of studies provide techniques for ®nding the law of the output of linear systems
subjected to non-Gaussian inputs (Grigoriu, 1995). Recent developments related to nonlinear dynamic
systems include:

(a) approximate solutions based on stochastic averaging, equivalent linearization, and consistent
closure methods (Ariaratnam, 1994; Naess and Krenk, 1996; Roberts and Spanos, 1990),
(b) partial di�erential equations for the characteristic function of the output of nonlinear systems
subjected to Gaussian, Poisson, or LeÂ vy white noise (Naess and Krenk, 1996), and
(c) stochastic stability studies using properties of products of random matrices and Lyapunov
exponents for nonlinear system subjected to both Gaussian and Poisson white noise (Ariaratnam,
1994; Grigoriu, 1996; Lin and Cai, 1995; Naess and Krenk, 1996; Wedig, 1988).

In contrast to earlier studies on stochastic stability based on the behavior of the output moments that
may provide no information on the stability of the output samples, the emphasis of most recent studies
is on the sample properties of the output (Naess and Krenk, 1996).

One other major current research trust relates to the development of e�cient and accurate numerical
algorithms for solving general stochastic mechanics problems (SchueÈ ller, 1997). These developments can
be divided in two groups: Monte Carlo simulation and solutions of partial di�erential equations for
output statistics. The Monte Carlo simulation method can be applied to solve both linear and nonlinear
random vibration problems regardless of their complexity. Importance sample and other techniques are
studied for improving the e�ciency of the direct Monte Carlo simulation method. The direct Monte
Carlo method involves three steps. First, sample paths of the input stochastic process need to be
generated. Methods for generating such samples can be found in (Grigoriu, 1995). Second, methods of
classical dynamics can be applied to calculate the outputs corresponding to the generated input samples.
Third, statistics of the output process can be estimated from its sample paths calculated in the previous
step. The Monte Carlo method is general but can be ine�cient because it requires a large number of
deterministic analyses (SchueÈ ller, 1997). New accurate and e�cient numerical algorithms continue to be
developed for solving partial di�erential equations giving statistics of the output. These algorithms
include new numerical methods for ®nding the probability density of a system output by solving the
Fokker±Planck±Kolmogorov equation in higher dimensions as well as other partial di�erential
equations for output descriptors, for example, the characteristic function of the output process (Naess
and Krenk, 1996; Soize, 1994; Spencer and Bergman, 1993). The classical dynamics problems are
speci®ed by deterministic models for both the system and the input. If the input is allowed to be a
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random process, the output is also a random process. The objective of the random vibration theory is to
®nd statistics of the output of deterministic dynamic systems subjected to random excitation.

The degree of di�culty of the solution of random vibration problems depends on the system and
input properties and the required output statistics. A simple example is used to demonstrate the solution
of random vibration problems. The linear random vibration examines linear dynamic systems. Simple
ordinary di�erential equations are available for calculating the second moment properties of the output
these systems (Soong and Grigoriu, 1993). The di�erential equation for the output mean function
coincides with the equation of motion of the system subjected to the mean function of input. However,
the di�erential equation for the covariance function of output has no counterpart in classical dynamics.
For example, consider a simple linear oscillator subjected to a weakly stationary white noise process
X(t ) with mean zero and covariance function cx(t, s )=pg0d(|tÿs|), where t and s are arbitrary times and
the subscript x is used to indicate that this covariance function corresponds to X(t ). The mean power
spectral density of this process is constant over all positive frequencies and equal to g0. The oscillator
displacement Y(t ) satis®es the di�erential equation of motion

�Y �t� � 2zo _Y �t� � o2Y�t� � X�t�, tr0, �4�
where z $ (0,1) and o>0 denote the damping ratio and the frequency of the system. Suppose that the
oscillator is at rest at the initial time, that is, Y(0)=0 and _Y �0� � 0. The mean of Y(t ) is zero at each
time because X(t ) has mean zero and the initial conditions are equal to zero. The covariance and
variance functions, cy(t, s ) and sy(t )

2=cy(t, t ), of the output Y(t ) de®ned by Eq. (4) can be obtained in
closed form (Soong and Grigoriu, 1993). For example, the displacement variance function is

sy�t�2 � pg0
4zo3

�
1ÿ 1

b2
eÿ2zo t�b2 � 2z2o2 sin2�bt� � zob sin�2bt��

�
, �5�

where b � o
�������������
1ÿ z2

p
. Fig. 4 shows the evolution of the variance function sy(t )

2 in the time range [0, 30].
As the time increases, sy(t )

2 approaches a constant value and the rate of convergence to this value
increases with z. It can be shown that the asymptotic expression of the covariance function cy(t, s ) for
large times depends only on the time lag |tÿs| so that the oscillator displacement becomes a weakly
stationary process as t, s 41. If the input is a Gaussian process, the oscillator displacement is also

Fig. 4. Variance function of displacement Y(t ).
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Gaussian and its second moment properties de®ne the process Y(t ) completely. In this case, simple
approximations are available for the probability that the maximum displacement during a speci®ed time
interval does not exceed a critical value (Grigoriu, 1995; Soong and Grigoriu, 1993). This probability
provides a measure of the system performance useful for reliability analysis.

The solution of the linear random vibration problem complicates signi®cantly if the input is non-
Gaussian and second moment properties are insu�cient for characterizing the output. Specialized
techniques are needed to obtained output statistics other than the mean and covariance functions when
the input is a non-Gaussian process (Grigoriu, 1995). Some of these techniques are based on the theory
of nonlinear random vibration. The nonlinear random vibration examines nonlinear dynamic systems
subjected to Gaussian and/or non-Gaussian excitation. As previously stated, there is no simple and
general solution for nonlinear random vibration problems. A relatively large number of methods have
been developed for analyzing nonlinear dynamic systems subjected to random excitation. The Fokker±
Planck±Kolmogorov equations, moment equations, perturbation, stochastic averaging, equivalent
linearization, and other methods can be used for solution (Grigoriu, 1995; Lin and Cai, 1995; Naess and
Krenk, 1996; Roberts and Spanos, 1990; SchueÈ ller, 1997). As mentioned previously, a major di�culty
with the method of moments is that the moment equations form an in®nite hierarchy that cannot be
solved exactly (Lin and Cai, 1995; Soong and Grigoriu, 1993). For example, suppose that the linear
restoring force o 2Y(t ) of the oscillator de®ned by Eq. (4) is replaced by o 2Y(t )(1+eY(t )2) and the
mean of the input X(t ) is not zero, where e is a small parameter. Then the mean displacement cannot be
determined because the average of the equation of motion includes, in addition to the mean
displacement and its derivatives, the mean of Y(t )3 or the third order moment of Y(t ) that is not
known. Similar situations are encountered with the di�erential equations for the higher order moments
of the displacement process. Hence, the moment equations of Y(t ) form an in®nite hierarchy that
cannot be solved exactly. Heuristic assumptions relating higher and lower order moments of Y(t ) have
been proposed to `close' the moment equations (Soong and Grigoriu, 1993). Alternative solutions for
closing the in®nite hierarchy of moment equations that are not based on heuristic assumptions are also
under development (Naess and Krenk, 1996).

5. Stochastic operator and deterministic input

Most physical systems consist of a large number of parts, referred to as components. The overall
properties of a system depend on the properties of and the interaction among its components. Most
component properties exhibit notable variations about their nominal values, for example, the measured
strength, frequency of vibration, and fatigue life of a set of nominally identical beams di�er from
specimen to specimen. Probabilistic models are needed to capture the uncertainty in these properties.
The series and parallel systems provide two extreme examples of component interaction. A series
systems has no redundancy and fails by its weakest component or link. On the other hand, parallel
systems have signi®cant redundancy and their strength or capacity may depends in a complex way on
the component mechanical properties and the way in which the surviving components share the applied
load. The loading and environmental conditions can also in¯uence or even determine some system
properties. For example, the failure modes of a system under monotonic and cyclic loads may di�er
signi®cantly.

The dimensions of the components of a system cover a broad range of scales from large parts of a
system, for example, the wings of an aircraft and the beams and columns of a frame, to microscopic
scales, for example, the phases of a multiphase medium and the grains of a polycrystal. A major
objective of stochastic mechanics is the determination of global properties of a system based on the
properties of and the interaction among its components. The focus of many early studies was the
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approximate determination of the capacity of some physical systems and the development of
phenomenological models for damage accumulation in materials. For example, a frequently used model
for the capacity of brittle materials was based on the assumptions that

1. an arbitrary volume of a material contains a random number of weak spots,
2. failure occurs when the strength of the weakest spot is exceeded, that is, the failure condition for

series systems, and
3. the capacities of the weak spots are independent identically distributed random variables (Bolotin,

1968; Freudenthal, 1961).

The resulting distribution for the system strength is Weibull and this distribution explains the
observed decrease of the average strength of brittle materials with the specimen volume (Bolotin, 1968).
Series systems can also be used to model statically determinate structures. Extensive studies were
performed to determine the capacity of parallel systems with components of independent or dependent
capacities {Ri }, i = 1,..., n. If the components are ideal elasto±plastic, the overall system strength is
R � Pn

i�1Ri. If the system components are brittle, the determination of the overall system capacity is
less simple because it requires to examine a large collection of equilibrium con®gurations with nÿm,
m= 0, 1,..., n ÿ 1, surviving components (Grigoriu, 1990; Phoenix, 1978). Parallel systems with brittle
components are also called Daniels systems.

The development of phenomenological damage accumulation models for materials subjected to cyclic
stresses is another research area investigated extensively in the past. Most studies in this area are based
on mathematical models calibrated to experiments rather then physically-based models, for example,
models based on the properties of the material microstructure. The stress-independent and stress-
dependent models have been proposed to trace the evolution of a damage measure D in time for material
subjected to cyclic loads (Bolotin, 1968). Consider a specimen subjected to a sequence of {nk } stress
cycles of amplitudes {sk }, k= 1,..., m, and de®ne the damage measure D � P

k�nk=n�k�, where n�k
denotes the number of cycles at which the specimen fails under stress cycles of a constant amplitude sk
and is given by S±N curves. The specimen is said to survive if the damage measure does not exceed one
and fails otherwise. Because n�k is uncertain, D is a random variable so that the surviving condition
D< 1 can be satis®ed with a probability, called reliability. This stress-independent damage
accumulation model, known as Miner's rule, is inconsistent with the observations showing that the
fatigue life depends on the order of application of the stress cycles. The stress-dependent models can
account for the loading sequence but are di�cult to calibrate to experimental results. The length A of a
crack in a material subjected to cyclic loads is frequently used as a damage measure. The evolution of A
in time can be given by a di�erential equation, for example, the Paris model, depending on some
material constants, crack geometry, and stress intensity factor process (Madsen et al., 1986).

Stochastic systems with very small components constitutes another area of current research.
Homogenization techniques are used to de®ne equivalent homogeneous models for random
heterogeneous media and develop consistent stochastic ®nite element methods. For example, these
techniques give e�ective elastic constants for a continuum linear elastic homogeneous model that is
equivalent with the actual material contained in a so-called representative volume consisting of a
relatively large number of small components such as grains for aluminum or other metals. The
equivalence is established from the condition that the homogeneous model behaves on average as the
system of grains contained in the representative volume. The resulting elastic constants take values in a
range de®ned by the Voigt and Reuss bounds depending on the boundary loading conditions. The
dependence of the e�ective constants on the boundary loads decreases with the size of the representative
volume (Ostoja-Starzewski, 1993; Willis, 1981). Homogenization is currently used to develop stochastic
®nite element formulations that are consistent with the material micromechanics (Ostoja-Starzewski,
1993). In these formulations, the size of the ®nite elements de®nes the size of the representative volume.

M. Grigoriu / International Journal of Solids and Structures 37 (2000) 197±214 207



The study of localization phenomena at a broad range of scales is another research topic of current
interest. For example, a detailed representation of the material microstructure is needed to capture
localization phenomena at the microscopic scale, for example, nucleation and microcrack growth.
Probabilistic models of grain geometry and atomic lattice orientation as considered in Arwade et al.
(1998) can be used to model the material structure. Localization can also occurs in systems with
macroscopic random components. For example, disordered cyclic systems, that is, nearly periodic
dynamic systems with small random imperfections, exhibit modal localization (Lin and Cai, 1995; Xie
and Ariaratnam, 1996). Several methods can be used to establish whether modal localization occurs and
determine the shapes of the localized modes.

Two examples are presented to demonstrate the homogenization method and illustrate the uncertainty
in the modal frequencies of linear systems with uncertain sti�ness. First, we consider the determination
of e�ective properties by homogenization. The e�ective properties of some systems can be obtained by
elementary calculations. For example, the e�ective sti�ness Ke� of a series and a parallel system with n
linear elastic components of random sti�ness {Ki }, i = 1,..., n, are 1=

Pn
i�1�1=Ki �: and

Pn
i�1Ki,

respectively. These formulas can be used to calculate probabilistic characteristics of Ke�. Suppose that
{Ki } are uncorrelated random variables with mean m and coe�cient of variation v. The mean and
coe�cient of variation of the sti�ness of a parallel system with such components are nm and v/Zn,
respectively, showing that the uncertainty in the system sti�ness decreases with the number of
components. Generally, the determination of e�ective material properties is rather complex. For
example, consider a medium with random heterogeneous conductivity given by the random ®eld G(x),
where x is an arbitrary point in the domain occupied by the material. The objective is to calculate the
value of the e�ective conductivity ge� for an equivalent homogeneous medium model. The value of ge�
can be obtained from the condition that the temperatures at the center of two spheres of radius r>0
extracted from the random heterogeneous and the equivalent homogeneous media subjected to a
constant ¯ux coincide in the limit as r 41 (Kim and Torquato, 1990). The determination of these
temperatures requires to solve two heat equations corresponding to heterogeneous and homogeneous
media. There are no analytical solutions of the heat equation for heterogeneous media so that the
temperature at center of the random heterogeneous sphere has to be calculated numerically for a
collection of samples of the conductivity random ®eld G(x). The resulting sample values of the
temperature at the center of the heterogeneous sphere can be used to estimate ge�. The heterogeneous
heat equation for each sample of G(x) can be obtained by the ®nite element method. The approach can
be ine�cient because it involves the calculation of the ®eld solution although the temperature is needed
only at the center of the sphere and requires di�erent ®nite element meshes for the samples of G(x) to
accommodate discontinuities in this ®eld for multiphase media. The calculation e�ciency can be
improved for multiphase media with constant conductivity in each phase by using the Monte Carlo
simulation method proposed in Kim and Torquato (1990). The method is based on estimates of the ®rst
exit time from a heterogeneous sphere of radius r for a Brownian motion starting at the center of the
sphere and traveling with di�erent speeds in various phases depending on the local conductivity. A
di�culty with this method relates to the complex re¯ections exhibited by the Brownian motion at the
phase interface. This di�culty limits the application of the method to multiphase materials with phases
of relatively simple geometry. An alternative Monte Carlo solution related to the random walk method
described in a previous section (Eqs. (2) and (3)) has been proposed in Grigoriu (1997a). The method
can be applied to any type of heterogeneous material.

The second example examines the uncertainty in the eigenvalues of a matrix with random
elements. Let A be a square symmetric matrix with random elements and consider the eigenvalue
problem

AU � LU, �6�
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where and L and U denote the random eigenvalues and eigenvectors of this matrix. Two classes of
methods can be used for solution. If it is possible to obtain exact or approximate expressions for
the eigenvalues L and the eigenvectors U of A as functions of the elements of this matrix, standard
techniques can be used to ®nd statistics of L and U. Otherwise, specialized techniques need to be
employed to obtained statistics of the eigenvalues and eigenvectors of A, for example, the iteration,
hierarchy, perturbation, crossing theory for random processes, Monte Carlo, and other methods
(Boyce, 1968). The Monte Carlo method involves three steps. First, n samples of A need to be
generated. Each sample of this matrix de®nes a deterministic eigenvalue problem. Second,
deterministic algorithms can be used to ®nd the eigenvalues and eigenvectors of each sample of A.
Third, histograms need to be developed for the eigenvalues and eigenvectors of A from the samples
of these random quantities obtained in the previous step. Fig. 5 shows histograms of the eigenvalues
of a discrete system with three equal masses connected in series by springs of random sti�ness {Ki },
i= 1, 2, 3. The random sti�ness vector K=(K1, K2, K3) is de®ned by K=exp(X), where X is a three
dimensional Gaussian vector with mean mm=(1, 1, 1), covariance matrix gg={r |iÿj|}, i, j = 1, 2, 3 and
r=0.9. The histograms correspond to n = 1000 samples of K. Samples of the sti�ness matrix K can be
obtained by mapping the samples of the Gaussian vector X into samples of K according to the de®nition
of this vector. Algorithms for generating Gaussian variables can be used to generate samples of X
(Grigoriu, 1995). The ®gure shows that the range of the likely values of the eigenvalues of A increases
with the order of these eigenvalues. The result can be used to explain di�culties related to the accurate
measurement of the higher order frequencies of structural and mechanical systems.

6. Stochastic operator and input

Numerous mechanical and physical systems are characterized by uncertain properties, as described
in the previous sections, and may be subjected to random rather than deterministic inputs. The
output of these systems satis®es stochastic operators with random inputs and depends on two sources
of uncertainty, the system and the input random properties. The stochastic operator can be linear or
nonlinear, di�erential or algebraic. The input consists of random variables and/or stochastic
processes.

Fig. 5. Histograms of the eigenvalues of a three mass system.
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The determination of (1) the law, second moment properties, or other statistics of the output or
functions of the output and (2) the system reliability, that is, the probability that one or more output
measures satisfy some design conditions during the system projected life t, are the main objectives of
most studies in this area. For example, it may be required to calculate the ®rst two moments of the
displacement of a dynamic system with uncertain parameters subjected to white noise or ®nd the
probability (reliability) that the crack trajectories originating at a location x0 of an aircraft do not leave
a disk of speci®ed radius centered at x0 during t.

There is no general method for solving exactly a problem de®ned by a general stochastic operator and
input. Exact solutions can be obtained only in a limited number of relatively simple cases. For example,
suppose that the evolution of the variance of the displacement process Y given by Eq. (4) needs to be
determined and the damping ratio z of this oscillator is uncertain. Let f(z ), z $ (0, 1), be the probability
density function of z. Accordingly, the di�erential operator of Eq. (4) is stochastic. The required
variance function is given by the integral fsy(t; z )2f(z )dz representing the expectation of the function
sy(t; z )

2 given by Eq. (5) with z=z. The solution of this problem is simple because the function sy(t; z )
2

is known and depends on a single random parameter. If the function sy(t; z )2 depended on a large
number of random parameters, that is, z was a random vector with a large number of coordinates, the
calculation of the expectation of this function would be prohibitive by classical integration algorithms.
Alternative integration algorithms based on, for example, the Monte Carlo simulation and/or the
response surface methods may have to be used for solution (Madsen et al., 1986; Naess and Krenk,
1996).

Most of the early work on the analysis of mechanics problems with stochastic operators and inputs
focused on the development of approximate analytical methods for solution and algorithms for
reliability analysis. The approximate analytical methods include perturbation, equivalent linearization,
Neumann series expansions, decomposition series, and other techniques (Adomian, 1986; Bolotin, 1968).
Most of these methods separate the operator in a deterministic and a stochastic component and view the
stochastic component of the operator as an additional random input. If the stochastic component has a
small order e, the perturbation method applies so that the solution can be expanded in a power series of
e and the terms of this series can be calculated sequentially as solutions of di�erential equations with the
same operator, the deterministic component of the stochastic operator, but di�erent random inputs
(Adomian, 1986; Bolotin, 1968). For example, the perturbation method is used in Bolotin (1968) to
calculate the second moment properties of the displacement of a beam with random imperfections
supported by a Winkler elastic foundation. The past developments of reliability methods are particularly
useful for evaluating the performance of large systems with uncertain properties subjected to random
inputs. Numerical algorithms based on these developments, such as FORM/SORM (Madsen et al.,
1986), are incorporated in computer codes and used for the probabilistic design of mechanical,
aerospace, and o�shore structures.

Current research directions include the development of analytical methods for solving some classes of
stochastic mechanics problems and e�cient numerical algorithms for analyzing general mechanics
problems de®ned by stochastic operators and inputs. The analytical studies cover a broad range of
problems, such as damage evolution in microstructure, formation of patterns in granular materials, and
system reliability. For example, recent studies show that the density of immobile dislocations in grains
subjected to plastic strain satis®es a Fokker±Planck equation and the solution of this equation can be
used to estimate the pattern of dislocations (Braasch et al., 1996). Localization phenomena identi®ed by
the formation of patterns can be observed in granular material with position dependent sti�ness. The
occurrence of these phenomena is captured by some of the recent analytical developments (Koenders,
1998). Relatively simple solutions were also found recently for the reliability of Daniels systems with a
large number of random components subjected to dynamic Gaussian inputs (Rychlik and Grigoriu,
1992).
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Recent developments of e�cient numerical algorithms for solving general stochastic mechanics
problems are based on Monte Carlo simulation, stochastic ®nite and boundary element, ®nite
di�erences, stochastic Green's functions, and other methods. The Monte Carlo simulation method is
the most general approach and can be applied to solve any stochastic problem for which there is a
numerical or analytical solution of the associated deterministic problem corresponding to arbitrary
but ®xed values of the random parameters. A drawback of the method is the potential ine�ciency.
The Monte Carlo method may require to solve a large set of deterministic problems corresponding
to generated samples of the di�erential operator and input. The resulting output samples can be used
to calculate the law or other response statistics and estimate reliability. For example, an estimate of
the reliability of the crack growth problem discussed previously is given by the fraction of crack
trajectories that do not leave a `safe' domain during the system projected lifetime. If the system
reliability is very high, a large number of crack trajectories needs to be generated to obtain a
satisfactory estimate of reliability. Consider a loaded coin with the probabilities 1ÿp and 0 < p<<1
of head (success) and tail (failure), respectively. The average number of tails in n tossing is np.
Suppose that p is unknown and the objective is to estimate this probability from the outcomes of n
trials. A value of np of at least ten is needed to estimate p satisfactorily so that the coin has to be
tossed more than 10/p times, for example, n = 105 for p = 10ÿ4. In the contest of Monte Carlo
simulation solution of the crack growth problem, at least 105 deterministic analyses have to be
performed to estimate a reliability of order 1±10ÿ4. In most practical cases, this number of calculations
is prohibitive.

New applications of the Monte Carlo and other numerical solutions are currently under development.
For example, stochastic Green's functions began to be used to generate arti®cial seismic ground motions.
The input consists of probabilistic models for the seismic sources a�ecting the seismicity at a site. The
system consists of the earth layers between seismic sources and site so that it can be viewed as a random
heterogeneous medium. The propagation and scattering of waves from seismic sources to site can be
described by stochastic Green's functions (Papageorgiou, 1997; Sato and Fehler, 1998; Sobczyk, 1985).
These developments are essential for earthquake engineering particularly at sites with few or no seismic
records, for example, the Eastern United States.

An elementary illustration of the stochastic ®nite di�erence method is presented here in some details.
Additional information on the stochastic ®nite element related methods can be found, for example, in
Ghanem and Spanos (1991). Consider a linear elastic system modeled by ®nite elements or di�erences
with the vector of nodal displacements U de®ned by the algebraic equation

K�X�U � F�X�, �7�

where K, F, and X denote the sti�ness matrix, the input vector, and a vector including all the random
parameters of both the system and the input, respectively. The notations in this equation indicate that K
and F depend on the vector of random parameters X. Because U is the solution of Eq. (7), it also
depends on X so that we can write U=U(X). Suppose that the objective is to determine the second
moment properties of U, that is, the mean vector and the covariance matrix of U. The hierarchy,
perturbation, decomposition, response surface, ®rst or higher order expansion, Monte Carlo simulation,
and other methods can be applied for solution (Shinozuka and Deodatis, 1988). The method based on
the ®rst order Taylor expansion of U about the mean of X is used for illustration.

Let mm and gg be the mean and the covariance matrices of the vector of uncertain parameters X.
Consider the ®rst order Taylor expansion

U�X� ' U�mmm� �
X
p

@U�mmm�
@xp
�Xp ÿ mp� �8�
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of U about the mean mm of X. The approximate mean and covariance matrices of the output U are

Ämmmu � U�mmm�,

Ägggu �
X
p,q

@U�mmm�
@xp

@U�mmm�
@xq

gpq �9�

and depend on the value of the solution U and of its gradient for X equal to mm. The solution of the
deterministic problem K(mm)U=F(mm) gives U(mm) and requires to calculate the inverse K(mm)ÿ1 of the
deterministic sti�ness matrix K(mm). The components of the gradient of U at mm can be calculated from the
equations

@U�mmm�
@xp

� K�mmm�ÿ1
�
@F�mmm�
@xp

ÿ @K�mmm�
@xp

U�mmm�
�

�10�

obtained from Eq. (7) by di�erentiation. The calculations of the gradients of U in Eq. (10) involves the
inversion of the sti�ness matrix K(mm) that was previously obtained to ®nd the mean solution.

Consider for illustration a beam on elastic foundation of span l ®xed and simply supported at the left
and right end, respectively. The beam has a constant sti�ness EI and is subjected to a uniformly
distributed load of random intensity X1. The foundation sti�ness is random and can be modeled by a
stochastic ®eld Z(x ), x $ (0, l ). The displacement U(x ) of the beam satis®es the di�erential equation
d4U(x )/dx 4+(Z(x )/EI )U(x )=X1/(EI ) with the boundary conditions U(0)=0, dU(0)/dx=0, U(l )=0,
and d2U(l )/dx 2=0. The ®nite di�erence solution of this problem for nodes equally spaced at l/4 leads to
the linear algebraic equation:24 7� aX2 ÿ4 1

ÿ4 6� aX3 ÿ4
1 ÿ4 5� aX4

3524U1

U2

U3

35 �
24 aX1

aX1

aX1

35, �11�

de®ning the beam displacements U1; U2; U3 at x=l/4; l/2; 3l/4, where a=(l/4)4/(EI ) and X1, X2=Z(l/4),
X3=Z(l/2), X4=Z(3l/4) are the coordinates of the vector of random parameters X. The gradients of the
matrices F and K for this problem (7) can be obtained simply. For example, the vector @F(mm)/@xp is a1
for p = 1 and 0 for p$1, the elements of @K(mm)/@x1 are zero and the elements of @K(mm)/@x2 are zero
except for the element (1, 1) that is equal to a. Simple calculations using Eqs. (8)±(10) give the
approximate means Ämmmu � �0:285, 0:457, 0:373� in., standard deviations (0.0688, 0.967, 0.1061) in. and
correlation coe�cients ~r12 � 0:8946; ~r13 � 0:9127; ~r23 � 0:8874 for E = 1.5 � 106 lbs/in2, I= 430 in4,
m1=1000 lbs/in; v1=0.20, mp=2000 lbs/in2; vp=0.30 for p= 2, 3, 4, and uncorrelated coordinates of X.

7. Conclusions

The properties of many physical systems and/or the actions on these systems exhibit notable random
¯uctuations that cannot be captured by deterministic models. Examples were used to demonstrate the
need for probabilistic models to represent systems and inputs depending on uncertain parameters. The
displacement, stress, strain, damage, and other output measures of these systems are stochastic so that
their properties cannot be obtained by the deterministic methods of classical solid mechanics. The
methods of stochastic mechanics are needed for solution. Following an introduction and a section on
elementary concepts of probability theory, the four possible combinations of deterministic/stochastic
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system and input were examined in separate sections. The case of deterministic systems and inputs is
discussed to demonstrate the potential of the stochastic methods for solving classical problems of solid
mechanics. The case of deterministic operators and random inputs is focused on random vibration
problems because these problems constitute a major topic of stochastic mechanics. The last two sections
deal with problems de®ned by stochastic operators and deterministic or stochastic inputs. All the
sections on stochastic mechanics review some of the most notable past accomplishments, outline current
research trends on both analytical and numerical solutions, and illustrate some of these research trends
by simple examples.
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